dx

8EY8

NACA TN 2007

M
WN ‘94wl AUVHEIT HOTL

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE 2007

THE LOAD DISTRIBUTION DUE TO SIDESLIP ON TRIANGULAR,
TRAPEZOIDAL, AND RELATED PLAN FORMS
IN SUPERSONIC FLOW
By Arthur L. Jones and Alberta Alksne

Ames Aeronautical Laboratory
Moffett Field, Calif.

Washington
January 1950

AFMDC
TECHII'C.L LIBRARY
LEL 2511

fi

f

i F

w

|

i




TECH LIBRARY KAFB, NM

I

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2007
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By Arthur L. Jones and Alberta Alksne

SUMMARY

Expressions are presented for the load distribution on & represent—
ative group of plan forms in sideslip at supersonic speeds. These
expressions were obtained by the application of lifting—surface theories
based on the linearized equation for compressible flow. Sketches of the
load distributions are included.

INTRODUCTION

In three recent reports (references 1, 2, and 3) the variations of
rolling moment, of yawing moment, and of 1ift and pitching moment with
sideslip have been investigated for a group of wing plan forms for super—
sonic speeds. The pressure distributions required to compute these
forces and moments were calculated using linearized compressible—flow
theory for thin airfoils. Since the reports referred to were concerned
with the detailed expressions of moments and forces for the varlous plan
forms, it was decided that the reference value of the pressure distribu-—
tions, their possible utility In stress analyesis and design, and the
desirability of including some pictorial representations Justified the
treatment of these distributions as the subject of a separate report.

By virtus of the many approximations involved in its derivation,
the linearized theory applied constitutes one of the most simplified
analytical approaches to compressible—flow problems. Furthermore, in
addition to the factors approximated in the linearization of the poten—
tial theory, the analysis employed does not account for the lack of
complete rigidity of a wing nor the effects of viscoslity in the flow.
These are two important factors that may have considerable effect on
the actual distribution of the pressure on a wing. Thus, it is not
expected that these pressure distributions will conform precisely to
those obtained in the actual physical flow. It is expected, however,
that these theoretical solutions will be good first approximations for
the plan forms and conditions considered herein and they should provide
satisfactory indications of the préssure—difference contours in general
if not in detail.
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The investigation covers the following configurations: (See figs. _
1 and 2.) (1) Triangular plan forms with subsonic leading edges or with -
supersonic leading edges; (2) trapezoidel plan forms with all possible
combinations of raked—in, raked—out, subsonic, or supersonic tips; (3)
rectangular plan.forms; and (%) two swept-back plan forms with super—
sonic trailing edges developed from the triangular wings. Illustrations
are included in order to provide a convenlent visual correlation between
the expressgions for the pressure distributions and for the moments end
forces that—were calculated from them (references 1, 2, and 3). The
arrengement of the appendixes was based on theé desire to present a syste—
matic end convenient compilation of expressions and illustrations for the
load distributions for the various plan forms considered.

SYMBOLS, COEFFICIENTS, AND AXES

A aspect ratio (?)
b span of wing measured normal to plane of symmetry
B Mach number parameter (,/M_la‘?])
Bm ratio of tangent of right tip angle to tangent of Mach
cone angle <t a:ll m »
Cy chord of wing in plane of symmetry .

E(Q,k) incomplete-elliptic integral of the second kind with

P
modulus k (f ,./ 1-k2 sin2 6 d6>
o)

E complete elliptic integral of the second kind with modulus k

0]

F{o,k) incomplete elliptic integral of the first kind with modulus k

(=)

X complete elliptic integral of the first kind with modulus k'
» o)
1 over—all longitudinal length of-swept-back wing
m slope of right wing tip measured in plane of wing (positive °

for raked—out tip, negative for raked—in tip)
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free—stream Mach number
slopes of plan—form edges relative to wind axes
pressure differential across wing surface, positive upward

loading coefficient
free—stream dynamic pressure < -2‘:-’- v2>

area of wing

perturbation velocity parallel to positive x axis
free—stream velocity

perturbation velocity parallel to 2z axis (positive upward)
rectangular coordinates of wind axes (fig. 3)

angle of attack, radians

sideslip angle (positive when sideslipping to right), degrees

Mach angle < tan™t %)
rectangulaer coordinates of stability axes (fig. 3)
rectangular coordinastes of body axes (fig. 3)
air density in the free stream
perturbation velocity potentisl
Subscripts

expressions given in Appendix B

The body axes are generally a right-handed system of three orthog—
onal axes as shown in figure 3 with the longitudinal sexis &' lying in
the plane of the wing. The stability axzes are, in effect, the body axes
rotated about the lateral axis 7' (through -} until the longitudinal
axis is in the horizontal plane containing the free—stream vector; a
subsequent rotation about the vertical axis £ (through B) would bring
the longitudinal axis in line with the free—stream vector and the axes
would now be coincident with the wind axes.
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It should be mentioned that the orientatlion of these axes as shown
in figure 3 is convenient for the calculations required to determine
the pressure distributions and the resulting forces and moments. In the
application of these results to the calculation of the motion and dynamic
stebility of-an airplane, however, the axes are usually rotated so that
the positlive direction of the longitudinal axis 1s into the free stream
and the positlive direction of the verticel axis is downward, that is,
toward the undercarriage of thé airplane.

METHOD OF ANALYSIS

The development of the expressions for the pressure (i.e., load)
distributions on wing plan forms in sideslip was merely an application
of supersonic wing theory. In this report, only the part of the theory
relating to the flat—plate or so—alled "additional" loading, which is
the loading resulting from a change 1in angle of attack will be consid—
ered. The loadings due to camber and twist are usually assessed inde—
pendently, and the sum of these two loadings is often referred to as the
"baslc" load distribution.

By linearization of the partial differential equation for compres—
gible flow it is possible to develop & simplified lifting—surface theory
for thin airfoils. The linearization 1s made possible by the assumption
that, for thin alrfolls, the perturbation velocltles induced by the alr—
foil are smsll relative to the free—stream veloclty. If the free—stream
veloclty vector is parallel to and in the direction of the positive x
axls and 1If @ denotes the perturbation velocity potential for isen—
tropic flow, the linearized partilal differentiel equation for steady—
state conditions at supersonic wvelocities is

4\ _ Fg _ Po _
<Ml“ 5 a0

where M; 1s the Mach nuwber of the free stream. There have been a
nuwber of -methods developed that provide means of fitting solutions of-
this equation to the boundary conditions of thin-airfoil theory (e.g.,
references 4 through 9). The results to be given herein were determined
through the general use of source—sink and doublet distributions (refer—
ences 4, 5, 6, and 9). In particular, the method of reference 6 was
applied to cases where a subsonic tip occurs in conjunctlon with a
supersonic leading edge or tip; whereas the load distributions for all
other edge and Msch cone arrangements were calculated by application of
the methods summarized in reference 9.

The first step in the anslysis is the establishment of the boundary
conditions. For thin airfoills the boundary conditions are usually
restricted to the 2z=0 plane. Thus, 1f the local angles of atteck at
various spanwise statlons of the wing are specified and it is assumed
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that the wing is coilncident with the 2z=0 plane, the boundary conditions

are set. Next, the expressions for the loading E— and the angle of

attack .« are formulated in terms of parameters that can be related to
the potentisl solutions of the differentisl equation and to the boundary
conditions. For linearized theory these relationships are

& %E (if u 1is for the upper surface)
where
L
ox }z=0
and v
O = = -
V
where
w=22
9z | z=0

Thus the problem is reduced to determining ¢ 1in such & msnner that
~ % is equal to the specified local angle of attack at every spanwise
station of the wing. o

The genersl problem of specifylng the angle of attack and of solv—
ing for the resulting veloclty potential is one that usually requires
the solution of an integral equation. (See reference 9.) For cases
where the edges of the plan form are supersonic, howsver, the lack of
interaction between the upper and lower surfaces of the wing permits the
problem to be solved by a distribution of sources in accordance with the
local slopes of the plan form and a straightforward integration of their
potentigls., The triangular and trapezolidal plan forms with supersonic
edges were treated In this manner,. ILikewlse, wherever a subsonic edge
is in conjunction with a supsrsonic leading edge or tip a straightforward
integration can be employed. For this case reference 6 provides & method,
based on the consideration of the upwash between the subsonic edge and the
Mach cone, whereby the usual operations involved in the solution of the
integral equation are eliminated. In general, however, it 1s necessary
to go through rather involved procedures to calculate the load distribu-—
tion when the camber, twist, and angle of attack of the plan form are -
specified. These procedures are discussed in reference 9 wherein, for
conlcal-flow conditions, a loading element is used to set up the inte—
gral equation and then the usual integral—equation techniques are
employed to solve 1t.

- It should be mentioned slso that, when the trailing edge is sub—
sonic, an additional stipulation based on some physical concept for the
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flow, such as the Kutta condition which is applied herein, is needed in
order to eliminate all but one of an infinite number of potential solu—
tions that will satlisfy the boundary conditions:

PRESENTATION OF RESULTS

A1l the plan forms and conditions investigated in references 1, 2,
and 3 were made up using the five following combinations of straight

edges:

1. A supersonic leading edge in conjunction with a subsonic
leading edge

2. A supersonic leading edge in conjunction with a subsonic
tralling edge

3. Two subsonic leeding edges

4, A subsonic leading edge in conjunction with a subsonic
trailing edge

5. Two supersonlc leading edges

The expressions for the load distributions on these five combina—
tions ere given in Appendix A in terms of-the wind—exes notatlon.

In order to provide an easy correlation between the load distribu—
tions and the aerodynamic characteristics of the plen forms presented
in references 1, 2, and 3, Appendix B contains the expressions for the
load distributions on various sectors of the plen forms in terms of the
plan—form perameters and the body-exes notation. Since the plan forms
are restricted to the 2z=0 plane for the purpose of analysis by the
thin—eirfoil theory, the body-axes notation, in a sense, refers to coor—
dinates on the projection of the plan form onto the 2z=0 plane, which
corresponds to giving the coordinates in:terms of the stability-exes
notation. This slight ambiguity between the body sxes and the stability
axes, caused by the assumptions employed in thin-eirfoil theory, should
not be allowed to cause any doubt about the direction of the normal
force. This force acts perpendicular to the plate and in a direction
parallel to the ¢' axis, not the { exis.

The order of presentation of the plen—form sectors in Appendix B
of this report is a duplicete—of the arrangements of the Appendixes B
of references 1, 2, and 3. A sketch of the load distribution 1s pre—
gsented for each sector in Appendix B in order to provide a convenient
visual interpretation of the load distribution.

Anes Aeronsutical Laboratory,
National Advisory Committee for Aeronautlcs,
Moffett Field, Calif., Oct. 10, 1949,
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APFPENDIX A

SUMMARY OF EXFRESSIONS FOR LOAD DISTRIBUTION ON WING
" ELEMENTS IN TERMS OF WIND-AXES NOTATION

Expressions Apply to Crosshatched Plan—Form Areas
1. Supersonic leading edge in conjunction with a subsonic leading
edge:

Ml

=nl

Mied
[}
i
] -

' B
2 ta.n—l
1\ n By
ny x

Bny
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2. Supersonic leading edge In conjunction with a subsonic trailing edge:

SESEY/CHIeES
FEORNCNES |

3 Two subsonic leading edges:
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where -

E is the complete elliptic integral of the second kind with modulus

JiE -

G =

1-BPnino— o/ (1-820;2) (1-82n,2)
B(ni-ng)

4, Subsonic leading edge in conjunction with a subsonic trailing edge:

EN 2
1

when n3 = E

p== /2
n+ 1-Bng
when ngo > 0; n3 <M%
P Bn; - Gz Gy + k!
‘ k'K k' 1-G; 2

Gi-Bnp) (1 2 — <+ E +
(G13Bno)(1-G.%) & T

[E F(p,k) ~K E (cP,k)]
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where
1+B2nyno—»/ (1-B2n; 2) (1-B2n,2)
l =
B(n1+no)
kt < 3aBlo K = F(%,k)
1-BGing
k =+ 1k'2 ' E = E(ZK)
2 12
o = sin—z ¥ G1 X
Gik
5-

®) 72
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. AP | (206 A | lI-CL 11132 %;l
<E1.__> - / = I 2 ———— gin™} Z +
— 5. 1. —
e g el gy 5(m D
e w2 ¥
-z +1
—_— = ... Y sin=a B gl
B —i-— * B2___l"_ z
no? 12 B<—no + x)
APPENDIX B )

SUMMARY OF EXPRESSIONS FOR IOAD DISTRIBUTION IN
TERMS OF BODY-AXES NOTATION

Expressions gpply to crosshatched and heavily
shaded plan—form areas

1. Triangular Wings:

(&) /oo | ey
s B EOee) | e |

where

E 1s the complete elliptic integral of the second kind with modulus

S
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_ (1-oPtan®) + BZ(m®—tenp)
2Bm( L+tan2p)

G

ﬂ(l—m tan B)2-82(m+ ten B)2][ (l+m tan B)2-B3(m~ tan B)Z]
2Bm(1+ tan®g)

(g) _ haps (m+ ET)(l—m tan B)
1 /5 B (m— 2—,—)(1+m tan B)

when tan f =m
1 G1Bm
Py ==/
EJ (1-m®)
1-Bm

when tan B

B+m
./ 2./ l+m tan B

P1 =
a (14m tan B)+B(m~ ten B)
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wvhen m <ten B <£_—‘E
Bim
/ [B(m+ tan B)=Gi(1l-m tan B)](1l+m tan B)
Py =
[B(m— tan B)+G1(1+m tan B)){1-m tan B)(1-G12)
Gy+k!
KK , g+ EYI0% 157 (9,k)K E (9,)]
Gy N Gi2-kr2 ’ ’
where
G (1—2® tan®p)-B3(m®—~tan®p)
1 =
oB(1+m2) ten B
,/[(l+m tan B)282(m~tan B)2][(1-m tan B)2B3(m+tan B)2]
oB(1+m®) tan B
k = J1x72 xt o Gu(l+m ten B)+B(m—ten B)

(1+m tan B)+G1B(m~ten B)

G_lz__k ¢ 2
= -
¢ =siw Gk

K = F(Z,x); E = B(E,k)
2 2
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<A_13> _ hafm+tan B)

1 4,  B(meten 8)°~(1-n ten B)*

(g) i 8a(m+ten B) B(m+tan p)—~{1-m tan 8) J(m—tan B)
% 4, n./B2(mrten B)2{1m tan )2 | [B(m—ten B)+(1+n tan B)}(mtten B)

/Em[(l% tan B)— %"' (B+tan B)] .
[m(B+ten B)—(1-B tan B) 1(m+ '-;-'7)

/['m(B+tan 8)—1-B tan B}](m+ %_',-)
-1
ves om{(1-B ten B)— Igl-'; (B+tan B)]

Q = hou( m+ ta.n__IB)

k‘l Dy « B2(mtten B)2—{1-m tan B)2

(A_P_>D _ 8o mstan B) /LB B)-1-3 ten )1(as ™
4 D2 [52(metan 8)2{(1-n ten B)2 on[(1-B tan B)- 1;-:- (B+ tan B)]
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E. tan B <«

Bm—1

B4m

15

ham—tan B)

&)

By J B3(m~tan B)3—{1+m tan B)2

|A

(£) -

gin—

——— e |
7/ B2(m—ten B)2—(1m ten B)2

gin—%

+

m\/Bz(m+'ban B)2—{1-m tan B)2

no

Yo(m+ tan B) [

4 ' 4
B¥(m+tan B)(-n—, + tan B)—(1-m ten B)(1~ 1;-,- tan B

B(a L) (1+tan2p)
¢

bo(m—tan B) [g_

>]+

B2(m—tan B)(z—: + tan B)+(1+m tan B} (1~ 2—: tan B)]

B(m+ !g})(l;tanzm

m+ta.n

AP
( ) B2(m+ten B)2—~(1-m tan B)2
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E¥., tan B = mB—l (gee footnote a.)

B+m

AP 2 - Ha(mé+2mB—l) x
R m/ B?(m?+2nB~1)2~(B+2m-2~B) 2
B2(nP+2uB-1) [(mB-1)+ L (B+m) ]~(B+2m-uPB)[ (B+m)— L (Bm-1)]
gin—l §' 4 +
B(m~ %") [(B+m)2+(mB~1)2)
het /m+2B—-}32m)— 3& (B2+2nB—1)
" (B2+1) (m+ gjr)
AP _ bo( m2+0mB—1)

: Eg* o/ B2(m2+2uB-1)—{B+om-a2B)

8Jeft leading edge hits Mach come from apex.
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[ 1'—(v/2)

- }wwma)
g

[n

b/2)
Er

] (B~tan B)+(1+B tan B)
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(A_ﬁ) _ & (m+tan B) (B—tan B) x
e /g, B2~tan® | B(m+tan B)+(1-m tan B)

E":(g%@ (B—ten B)+(1-8 tan B)
+
[m-— ni=(b/2) 1: 2)] (B~tan B)
3

[m—- n_':(_g};_/_E_)_] (B~tan B)

[l’-‘ﬁ@-] (B=ten B)+(1sB tan B)
:

—1

(él'; o B
4 /G B2—=tan2f

2. Swept=back wihg components:
H.
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J¥.

Bl (gee footnote b.)

tan B =

B+m

NACA TN 2007

breft leading edge hits Mach cone from apex.
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K¥., tan B = Bud (See footnote b.)
B+m

3. Trapezoidal wing components.
L.

21

blert leading edge hits Mach cone from apex
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B2 le t 1— 3_'_ £ %
<AP.> b |z R (i' + tan B)+( % an B) tan B ,
q L 1/ Bg—tanzﬁ 2 B(l+t&n26)

hof m~tan B)
w»/ B2(m—ten B)2—(L+m tan B)2

B®(m-tan B)(ﬁ + tan B)+(1l+m tan B)(1~ llr tan s)}
X _ sin : E
B(m+ ?—r)(l+ tan2p)

(1-B tan B)-—- 3‘5-; (B+tan B)

(m—~tan B)(B+tan B)

ey, G
(q 21 n/ B2—tax?p | Blm-tan B)+(1+m tan B) (mt %:—)(B%an B)

(m+ 15—) (B+tan B)

tan—t

(1-8 tan B)— IE- (B+tan B)
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—1

tan—t

23

(m+ gﬂ-:-)(B+ta.n B)

(18 tan B)— 1 (B+tan B)

[ ' .
"
i (35

(- 2-;-)(B—tan B)

(14B ten B)+ 1;% (B~tan B)
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(A—P> o= (m+ten B)(B-tan B) (148 tan ﬁ)"'iT (B—tan B) .

./ B2—ten28 | B(m+tan B)+(1-m tan B) (m— Ié—;—)(B—-ta.n B)

(m— ﬂg;) (B~tan B)

tan— ,
(148 ten B)+ 1;- (B—tan B)
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I _ gin™t

() s -
q o % BP—tan®p) 2 B(1+tan2g)

: 132(151% +tan B)+(1— g% tan B) tan BJ
+

ha(m+tan B)
nﬁa(mﬂsan B)2—1-m tan B)2

3T

’: . 32(2—: + ten B)(m+ten B)—{1-m tan B)(1- lgl;- tan B):}
— + sin

B(m—~ 2—:—)(l+tan2ﬁ)

q /g ~ B2—tan®p
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R¥*.

e

PRy TR T T

Pnoe
ik [
[ t ;o
p %

(&), (%),
(&) L&)~ (=) - (&)

AP
where 1n' 1in (T>M should be replaced by 7' + (% — mcy)

n' in (%—El should be repleced by n*' -— (% ~ mey)

R¥**
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(&), .-(2)
(8.8« (& - (o)

where f' in (3—1‘-’) should be replaced by 7' + (g ~ mCy)

n* in (g) should be replaced by n' - (g — mey)

R*%%

(&) (&) () -(#)

where n° in (‘3—P> should be replaced by 7' + (% — mecy)

7' in (gz) should be replaced by n' — (123 ~ mey)
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where 7' in <€B> should be replaced by ' + (% — mer)
N

7' in <§2> should be replaced by n' — (% — mey)
Q

REENH,
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(e (8,
) ) (8)(8)

where §' in < ;g) ghould be replaced by 3' + (2— — mer)
N

n' in (f) should be replaced by g' — (% — mcyp.)
P
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&) (%
(), (), +(8), (D

b
where 7' 1In (é%) should be replaced by n' + 73
N

r 4n ( & ghould be replaced by 1’ -2
Ll T/, 2

ge*,
/ "\'
N
—1 N
3 - n'{b/2)
2\ gl
/ N\
o B
X g'

(& )eyns (&)
(®),.. (&) ()(®)
q e q q q A
where 7' 1in < ?) should be replaced by 7° +
N
a' in <§z> should be replaced by q' —
P

HT1e I NYTe 2
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(@E >ﬁ -

ba(m—tan B)
B2(m—tan B)2—(1+m tan B)2
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<_A_P;> - bo(m+tan B)
1 v  « B2(m+ten B)2—(1-m tan B)Z

REFERENCES

1. Jones, Arthur L., Spreiter, John R., and Alksne, Alberta: The
Rolling Moment Due to Sideslip of Triangular, Trapezoldal, and
Related Plan Forms in Supersonic Flow. KACA TN 1700, 1948,

2. Jones, Arthur L., and Alksne, Alberta: The Yawlng Moment Due to
Sideslip of Triangular, Trapezoldal, and Related Plan Forms in
Supersonic Flow. NACA TN 1850, 1949.

3. Jones, Arthur L., Sorenson, Robert M., and Lindler, Elizabeth E.:
The Effects of Sideslip, Aspect Ratlo, and Mach Number on the
ILift and Pitching Moment of Triangular, Trapezoidal, and Related
Plan Forms in Supersonic Flcw. NACA TN 1916, 1949.

4. Heaslét, Max. A., Lomax, Harvard, and Jones, Arthur L.: Volterra's
Solution.of the Wave Equation as Applied to Three-Dimensional
Supersonic Airfoil Problems. NACA TN 1412, 19h7.

5. Heaslet, Max. A., and Lomax, Barvard: The Use of Source-Sink and
Doublet Distributions Extended to the Solutlon of Arbltrary
Boundary Value Problems in Supersonic Flow. NACA TN 1515, 1948,



NACA TN 2007 33

6. Evvard, John C.: Theoretical Distribution of Lift on Thin Wings at
Supersonic Speeds (An Extension). NACA TN 1585, 1948.

T. Busemasnn, Adolph: Infinitesimasl Conical Supersonic Flow. NACA TM
1100, 1947.

8. Lagerstrom, P. A.: Linearized Supersonic Theory of Conical Wings.
NACA TN 1685, 1948.

9. Heaslet, Max. A., end Lomax, Harvard: The Application of Green's
Theorem to the Solution of Boundary—Value Problems in Linearized
Supersonic Wing Theory. NACA TN 1767, 1949. _






NACA TN 2007 35

Figure [.—The ftriangular, frapezoidal, and rectangular plan-

form types investigated.
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Bm</

Figure 2.— Swept-back plan forms and Mach cone
configurations Investigated,
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/R

X, Y, £ rectangular coordinates of wind axes
57,’;’ rectangular coordinates of stability axes
¢,9,4 rectangular coordinates of body axes

Figure 3. —Coordinate axes systems used in analys/s.
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